KenLM: Faster and Smaller Language Model Queries

Kenneth Heafield heafield@cs.cmu.edu

Carnegie Mellon

July 30, 2011

kheafield.com/code/kenlm

What KenLM Does

Answer language model queries using less time and memory.

```
\begin{array}{lll} \log p(<\!\!s\!\!> & \rightarrow \mathrm{iran}) = -3.33437 \\ \log p(<\!\!s\!\!> \mathrm{iran} & \rightarrow \mathrm{is} &) = -1.05931 \\ \log p(<\!\!s\!\!> \mathrm{iran} \mathrm{is} & \rightarrow \mathrm{one}) = -1.80743 \\ \log p(<\!\!s\!\!> \mathrm{iran} \mathrm{is} \mathrm{one} & \rightarrow \mathrm{of} &) = -0.03705 \\ \log p( & \mathrm{iran} \mathrm{is} \mathrm{one} \mathrm{of} & \rightarrow \mathrm{the} &) = -0.08317 \\ \log p( & \mathrm{is} \mathrm{one} \mathrm{of} \mathrm{the} & \rightarrow \mathrm{few} &) = -1.20788 \end{array}
```

Related Work

Downloadable Baselines

SRI Popular and considered fast but high-memory

IRST Open source, low-memory, single-threaded

Rand Low-memory lossy compression

MIT Mostly estimates models but also does queries

Papers Without Code

TPT Better memory locality

Sheffield Lossy compression techniques

Related Work

Downloadable Baselines

SRI Popular and considered fast but high-memory

IRST Open source, low-memory, single-threaded

Rand Low-memory lossy compression

MIT Mostly estimates models but also does queries

Papers Without Code

TPT Better memory locality

Sheffield Lossy compression techniques

After KenLM's Public Release

Berkeley Java; slower and larger than KenLM

Why I Wrote KenLM

Decoding takes too long

- Answer queries quickly
- Load quickly with memory mapping
- Thread-safe

Why I Wrote KenLM

Decoding takes too long

- Answer queries quickly
- Load quickly with memory mapping
- Thread-safe

Bigger models

Conserve memory

Why I Wrote KenLM

Decoding takes too long

- Answer queries quickly
- Load quickly with memory mapping
- Thread-safe

Bigger models

Conserve memory

SRI doesn't compile

Distribute and compile with decoders

Outline

- Backoff Models
 - State
- 2 Data Structures
 - Probing
 - Trie
 - Chop
- Results
 - Perplexity
 - Translation

Example Language Model

Unigrams		Big	Bigrams		Trigran	Trigrams	
Words	log p	Back	Words	$\log p$	Back	Words	log p
<s></s>	$-\infty$	-2.0	<s> iran</s>	-3.3	-1.2	<s> iran is</s>	-1.1
iran	-4.1	-0.8	iran is	-1.7	-0.4	iran is one	-2.0
is	-2.5	-1.4	is one	-2.0	-0.9	is one of	-0.3
one	-3.3	-0.9	one of	-1.4	-0.6		
of	-2.5	-1.1					

Example Queries

Unigrams			
Words	$\log p$	Back	
<s></s>	$-\infty$	-2.0	
iran	-4.1	-0.8	
is	-2.5	-1.4	
one	-3.3	-0.9	
of	-2.5	-1.1	

Digitaliis			
Words	$\log p$	Back	
<s> iran</s>	-3.3	-1.2	
iran is	-1.7	-0.4	
is one	-2.0	-0.9	
one of	-1.4	-0.6	

Rigrams

vvorus	iug p
<s> iran is</s>	-1.1
iran is one	-2.0
is one of	-0.3

Trigrams

Morde

Query: <s> iran is

$$\log p(<\mathsf{s}>\mathsf{iran}\to\mathsf{is}) = -1.1$$

Query: iran is of

(ao.j. nan io o.			
$\log p(\text{of})$	-2.5		
Backoff(is)	-1.4		
Backoff(iran is)	+ -0.4		
$\log p(\text{iran is} \rightarrow \text{of})$	= -4.3		

Lookups Performed by Queries

<s> iran is

Lookup

- is
- iran is
- <s> iran is

Score

 $\log p(<\mathsf{s}>\mathsf{iran}\to\mathsf{is})=-1.1$

iran is of

Lookup

- of
- is of (not found)
 - is
- iran is

Score

$$\log p(\text{of})$$
 -2.5
Backoff(is) -1.4
Backoff(iran is) + -0.4
 $\log p(\text{iran is} \rightarrow \text{of}) = -4.3$

Lookups Performed by Queries

<s> iran is

Lookup

- is
- iran is
- <s> iran is

Score

 $\log p(<\mathsf{s}>\mathsf{iran}\to\mathsf{is})=-1.1$

iran is of

Lookup

- of
- is of (not found)
 - is
- iran is

Score

$$\begin{array}{c} \log p(\text{of}) & -2.5 \\ \text{Backoff(is)} & -1.4 \\ \hline \text{Backoff(iran is)} & +-0.4 \\ \hline \log p(\text{iran is} \rightarrow \text{of}) = -4.3 \end{array}$$

Lookups Performed by Queries

<s> iran is iran is of Lookup Lookup is of State is of (not found) iran is Backoff(is) <s> iran is is Backoff(iran is) iran is Score Score $\log p(\langle s \rangle \text{ iran } \rightarrow \text{ is}) = -1.1$ $\log p(\text{of})$ -2.5Backoff(is) -1.4 Backoff(iran is) + -0.4 $\log p(\text{iran is} \rightarrow \text{of}) = -4.3$

Stateful Query Pattern

Stateful Query Pattern

```
Backoff(\langle s \rangle)

log p(\langle s \rangle \rightarrow iran) = -3.3

Backoff(iran), Backoff(\langle s \rangle iran)

log p(\langle s \rangle iran \rightarrow is) = -1.1

Backoff(iran), Backoff(iran)

log p(iran), Backoff(iran)

log p(iran), Backoff(iran)

Backoff(iran), Backoff(iran)

Backoff(iran), Backoff(iran)

Backoff(iran), Backoff(iran)

Backoff(iran), Backoff(iran)
```

Data Structures

Probing Fast. Uses hash tables.

Trie Small. Uses sorted arrays.

Chop Smaller. Trie with compressed pointers.

Key Subproblem

Sparse lookup: efficiently retrieve values for sparse keys

Sparse Lookup Speed

Sparse Lookup Speed

Linear Probing Hash Table

Store 64-bit hashes and ignore collisions.

Bigrams					
Words	Hash	$\log p$	Back		
<s> iran</s>	0xf0ae9c2442c6920e	-3.3	-1.2		
iran is	0x959e48455f4a2e90	-1.7	-0.4		
is one	0x186a7caef34acf16	-2.0	-0.9		
one of	0xac66610314db8dac	-1.4	-0.6		

Linear Probing Hash Table

- 1.5 buckets/entry (so buckets = 6).
- Ideal bucket = hash mod buckets.
- Resolve bucket collisions using the next free bucket.

Bigrams				
Words	Ideal	Hash	$\log p$	Back
iran is	0	0x959e48455f4a2e90	-1.7	-0.4
		0x0	0	0
is one	2	0x186a7caef34acf16	-2.0	-0.9
one of	2	0xac66610314db8dac	-1.4	-0.6
<s> iran</s>	4	0xf0ae9c2442c6920e	-3.3	-1.2
		0x0	0	0
Array				

Probing Data Structure

Array

Bigrams			
Words $\log p$ Bac			
<s> iran</s>	-3.3	-1.2	
iran is	-1.7	-0.4	
is one	-2.0	-0.9	
one of	-1.4	-0.6	
Probing Hash Table			

Trigrams		
Words	$\log p$	
<s> iran is</s>	-1.1	
iran is one	-2.0	
is one of	-0.3	
Probing Hash	Table	

Probing Hash Table Summary

Hash tables are fast. But memory is 24 bytes/entry.

Next: Saving memory with Trie.

Trie Uses Sorted Arrays

Sort in suffix order.

Unigrams				
Words	$\log p$	Back		
<s></s>	$-\infty$	-2.0		
iran	-4.1	-0.8		
is	-2.5	-1.4		
one	-3.3	-0.9		
of	-2.5	-1.1		

Bigrams			
Words	$\log p$	Back	
<s> iran</s>	-3.3	-1.2	
iran is	-1.7	-0.4	
one is	-2.3	-0.3	
<s> one</s>	-2.3	-1.1	
is one	-2.0	-0.9	
one of	-1.4	-0.6	

Trigrams		
Words	$\log p$	
<s> iran is</s>	-1.1	
<s $>$ one is	-2.3	
iran is one	-2.0	
<s $>$ one of	-0.5	
is one of	-0.3	

Trie

Sort in suffix order. Encode suffix using pointers.

Interpolation Search In Trie

Each trie node is a sorted array.

Bigrams: * is

Words $\log p$ Back Ptr

$$\langle s \rangle$$
 is -2.9 -1.0 0 iran is -1.7 -0.4 0 one is -2.3 -0.3 1

Interpolation Search $O(\log \log n)$

$$pivot = |A| \frac{key - A.first}{A.last - A.first}$$

Binary Search: O(logn)

$$pivot = \frac{|A|}{2}$$

Saving Memory with Trie

Bit-Level Packing

Store word index and pointer using the minimum number of bits.

Optional Quantization

Cluster floats into 2^q bins, store q bits/float (same as IRSTLM).

Offset	Ptr	Binary
0	0	000
1	0	000
2	1	001
3	2	010
4	2	010
5	3	011
6	5	101

Raj and Whittaker (2003)

Offset	Ptr	Binary
0	0	000
1	0	000
2	1	001
3	2	010
4	2	010
5	3	011
6	5	101

Raj and Whittaker (2003)

Offset	Ptr	Binary
0	0	000
1	0	000
2	1	001
3	2	010
4	2	010
5	3	011
6	5	101

Chopped	Offset
01	3
10	6

Raj and Whittaker (2003)

Trie/Chop Summary

Save memory: bit packing, quantization, and pointer compression.

Outline

- Backoff Models
 - State
- 2 Data Structures
 - Probing
 - Trie
 - Chop
- Results
 - Perplexity
 - Translation

Perplexity Task

Score the English Gigaword corpus.

Model

SRILM 5-gram from Europarl + De-duplicated News Crawl

Measurements

Queries/ms Excludes loading and file reading time
Loaded Memory Resident after loading
Peak Memory Peak virtual after scoring

Perplexity Task: Exact Models

Perplexity Task: Berkeley Always Quantizes to 19 bits

Perplexity Task: RandLM from an ARPA file

Translation Task

Translate 3003 sentences using Moses.

System

WMT 2011 French-English baseline, Europarl+News LM

Measurements

Time Total wall time, including loading

Memory Total resident memory after decoding

Moses Benchmarks: 8 Threads

Moses Benchmarks: Single Threaded

Comparison to RandLM (Unpruned Model, One Thread)

Conclusion

Maximize speed and accuracy subject to memory. Probing > Trie > Chop > RandLM Stupid for both speed and memory.

Moses 8 0 5 file

Distributed with decoders: cdec KLanguageModel

Joshua use_kenlm=true

kheafield.com/code/kenlm/