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Problem

➲ Monitor systems and watch for 
changes

➲ Unsupervised
● Computer must be able to learn patterns
● Automatically determine if deviation is 

significant
➲ Fast

● Test for anomalies as data comes in
● Incorporate new data into model

➲ Non-linear
● Algorithm needs to work in many envi-

ronments



Applications to Networking

➲ Monitor network packets and streams
● Collect header information, particularly 

port numbers
➲ Security

● Detect worms by large, structural changes
● Detect viruses by small numbers of devia-

tions from fit
➲ Optimization

● Automatically learn traffic patterns and 
react to them

● Anticipate traffic



Outline

➲ How to phrase the problem mathemat-
ically

➲ Linear regression in multiple dimen-
sions with Principal Component Analy-
sis (PCA)

➲ Extending PCA to estimate errors in 
principal components

● How to use the errors
➲ Kernel PCA adds non-linearity
➲ Future

● Implementation



Thinking Geometrically

➲ Each packet is a data point with coor-
dinates equal to its information

➲ Fit a manifold to find patterns
● Compare with previous fits by storing 

manifold parameters
● Structure of manifold can tell us about un-

derlying processes
➲ Distance from manifold indicates de-

viation



Principal Component Analysis

➲ Choose directions of greatest variance
● These are the eigenvectors of the covari-

ance matrix
● Called Principal Components

➲ Widespread use in science
➲ Linear

● Many non-linear extensions—we will focus 
on kernel PCA later

● Equivalent to least-squares
➲ Jolliffe 2002



Error Finding

➲ Goal: Find errors in Principal Compo-
nents.

● Assume uncorrelated, multivariate normal 
distribution

➲ Find out how much each component 
contributes to estimating each point

➲ Get error of estimate in terms of (un-
known) errors in components.  

● Use residual to approximate error
➲ Out pops a regression problem which 

we can solve



Finding the Nearest Point

➲ Principal Component Analysis defines 
a subspace

● Example: Linear regression finds a one-
dimensional subspace of the two-dimen-
sional input

● Components are orthonormal
➲ Project data point into subspace

● Data point 
● Components 
● Nearest point 
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Error in Nearest Point

➲     is the closest point to data     
● Residual is 

➲ What is the error in this estimate?
● Predictor      variance 
● Component      variance

● Symmetric about component, spread 
evenly in the         possible dimensions

● Propagate the error:
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Idea: Regression Problem

➲ Use squared residual length
● This should, on average, equal predictor 

variance 
➲ Goal: Find 

● This is a linear regression problem:             
                                                                     
                                                                  

● Subject to constraints
● To be a variance,
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What All That Math Just 
Meant

➲ We did linear regression in multiple 
dimensions

➲ Found the point closest to each data 
point

➲ The residuals estimate error present
➲ Error is allocated to the contributing 

components



Using the Errors

➲ Recall assumptions about error
➲ Compare time slices to find structural 

changes
● Match up components then test for similar-

ity
➲ Measure distances to anomalous 

points
● We can find the standard deviation at any 

point on the manifold
● Compare residual to standard deviation 

and test



Kernel Principal Component 
Analysis

➲ Non-linear manifold fitting algorithm
➲ Conceptually uses Principal Compo-

nent Analysis (PCA) as a subroutine
● Non-linearly maps data points (linearizes) 

into an abstract feature space
● Performs PCA in feature space

➲ Errors
● Error computation is conceptually the 

same
➲ Schölkopf et al. 1996



Kernels

➲ Feature space can be high or even in-
finite dimensional

● Avoid computing in feature space
➲ Map two points into feature space and 

compute dot product simultaneously
● Kernel function takes two data points and 

computes their dot products in feature 
space 

● Non-data points are expressed as linear combi-
nations

● Example: polynomials of degree d
k  x , y = x⋅y1d



Future

➲ Implementation
● Working kernel PCA implementation
● Hungarian algorithm for matching compo-

nents
● Use constrained least-squares regression 

algorithm
➲ Use

● Time slice incoming network data
● Compare fits between slices
● Classify regions of manifold as potential 

problems



Summary

➲ Problem arising from computer net-
works

➲ Application of Principal Component 
Analysis (PCA)

➲ Extensions to PCA
● Accounting for and using error
● Kernel PCA

➲ Future of project
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