Manifold Learning to Detect Changes in Networks

Kenneth Heafield Richard and Dena Krown SURF Fellow Mentor: Steven Low

Problem

- Monitor systems and watch for changes
- Unsupervised
 - Computer must be able to learn patterns
 - Automatically determine if deviation is significant
- Fast
 - Test for anomalies as data comes in
 - Incorporate new data into model
- Non-linear
 - Algorithm needs to work in many environments

Applications to Networking

Monitor network packets and streams

- Collect header information, particularly port numbers
- Security
 - Detect worms by large, structural changes
 - Detect viruses by small numbers of deviations from fit
- Optimization
 - Automatically learn traffic patterns and react to them
 - Anticipate traffic

Outline

- How to phrase the problem mathematically
- Linear regression in multiple dimensions with Principal Component Analysis (PCA)
- Extending PCA to estimate errors in principal components
 - How to use the errors
- Kernel PCA adds non-linearity
- Future
 - Implementation

Thinking Geometrically

- Each packet is a data point with coordinates equal to its information
- Fit a manifold to find patterns
 - Compare with previous fits by storing manifold parameters
 - Structure of manifold can tell us about underlying processes
- Distance from manifold indicates deviation

Principal Component Analysis

Choose directions of greatest variance

- These are the eigenvectors of the covariance matrix
- Called Principal Components
- Widespread use in science
- Linear
 - Many non-linear extensions—we will focus on kernel PCA later
 - Equivalent to least-squares
- Jolliffe 2002

Error Finding

- Goal: Find errors in Principal Components.
 - Assume uncorrelated, multivariate normal distribution
- Find out how much each component contributes to estimating each point
- Get error of estimate in terms of (unknown) errors in components.
 - Use residual to approximate error
- Out pops a regression problem which we can solve

Finding the Nearest Point

- Principal Component Analysis defines a subspace
 - Example: Linear regression finds a onedimensional subspace of the two-dimensional input
 - Components are orthonormal
- Project data point into subspace
 - Data point X_i
 - Components C_k

• Nearest point
$$N_i = \sum_{k=1}^{k} (X_i \cdot C_k) C_k$$

Error in Nearest Point

- \triangleright N_i is the closest point to data X_i
 - Residual is $X_i N_i$
- What is the error in this estimate?
 - Predictor N_i variance ρ_i^2
 - Component C_k variance σ_k^2
 - Symmetric about component, spread evenly in the p-1 possible dimensions
 - Propagate the error:

$$\rho_i^2 = \frac{1}{p-1} \sum_{k=1}^m \sigma_k^2 (X_i \cdot X_i - 2X_i \cdot N_i + p(X_i \cdot C_k)^2)$$

Idea: Regression Problem

- Use squared residual length $\|X_i N_i\|^2$
 - This should, on average, equal predictor variance ρ_i^2
- Goal: Find σ_k
 - This is a linear regression problem:
- $\left\| X_{i} N_{i} \right\|^{2} \approx \frac{1}{p-1} \sum_{k=1}^{m} \sigma_{k}^{2} (X_{i} \cdot X_{i} 2X_{i} \cdot N_{i} + p(X_{i} \cdot C_{k})^{2}) \right\|^{2}$
 - Subject to constraints
 - To be a variance, $0 \le \sigma_k^2 \le 1$

What All That Math Just Meant

- We did linear regression in multiple dimensions
- Found the point closest to each data point
- The residuals estimate error present
- Error is allocated to the contributing components

Using the Errors

- Recall assumptions about error
- Compare time slices to find structural changes
 - Match up components then test for similarity
- Measure distances to anomalous points
 - We can find the standard deviation at any point on the manifold
 - Compare residual to standard deviation and test

Kernel Principal Component Analysis

- Non-linear manifold fitting algorithm
- Conceptually uses Principal Component Analysis (PCA) as a subroutine
 - Non-linearly maps data points (linearizes) into an abstract feature space
 - Performs PCA in feature space
- Errors
 - Error computation is conceptually the same
- Schölkopf et al. 1996

Kernels

Feature space can be high or even infinite dimensional

Avoid computing in feature space

- Map two points into feature space and compute dot product simultaneously
 - Kernel function takes two data points and computes their dot products in feature space
 - Non-data points are expressed as linear combinations
 - Example: polynomials of degree d $k(x, y) = (x \cdot y + 1)^d$

Future

Implementation

- Working kernel PCA implementation
- Hungarian algorithm for matching components
- Use constrained least-squares regression algorithm

Use

- Time slice incoming network data
- Compare fits between slices
- Classify regions of manifold as potential problems

Summary

- Problem arising from computer networks
- Application of Principal Component Analysis (PCA)
- Extensions to PCA
 - Accounting for and using error
 - Kernel PCA
- Future of project

Acknowledgements

Richard and Dena Krown SURF Fellow
SURF Office