
Mining Business Topics in Source Code using Latent
Dirichlet Allocation

Girish Maskeri, Santonu Sarkar
SETLabs, Infosys Technologies Limited

Bangalore 560100, India
girish_rama@infosys.com,

santonu_sarkar@infosys.com

Kenneth Heafield
California Institute of Technology

CA USA
kpu@kheafield.com

ABSTRACT
One of the difficulties in maintaining a large software system
is the absence of documented business domain topics and
correlation between these domain topics and source code.
Without such a correlation, people without any prior appli-
cation knowledge would find it hard to comprehend the func-
tionality of the system. Latent Dirichlet Allocation (LDA),
a statistical model, has emerged as a popular technique for
discovering topics in large text document corpus. But its ap-
plicability in extracting business domain topics from source
code has not been explored so far. This paper investigates
LDA in the context of comprehending large software systems
and proposes a human assisted approach based on LDA for
extracting domain topics from source code. This method
has been applied on a number of open source and propri-
etary systems. Preliminary results indicate that LDA is able
to identify some of the domain topics and is a satisfactory
starting point for further manual refinement of topics.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering;

General terms
Theory,Algorithms,Experimentation

Keywords
Maintenance, Program comprehension, LDA

1. INTRODUCTION
Large legacy software systems often exist in a state of dis-

organization with poor or no documentation. Adding new
features and fixing bugs in such a system is highly error
prone and time consuming since the original authors of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISEC’08,February 19-22, 2008, Hyderabad, India.
Copyright 2008 ACM 978-1-59593-917-3/08/0002 ...$5.00.

system are generally no longer available. Moreover, the peo-
ple maintaining the code-base do not comprehend the func-
tional purpose of different program elements (functions, files,
classes, data structures etc.) and the roles they play to fulfill
various functional services offered by the system.

When a software system is small, one can understand
its functional architecture by manually browsing the source
code. For large systems, practitioners often rely on program
analysis techniques such as call graph, control and data flow
and slicing [2].Though this is very helpful to understand the
structural intricacies of the system, it helps a little to com-
prehend the functional intent of the system. The reason is
not difficult to understand. Structural analysis techniques
work on the structural information derived from a set of
program source code. The structural information is at a
very low level of granularity- such as files, functions, data-
structures, variable usage dependencies, function calls and
so on. This information hardly reveals any underlying func-
tional purpose. For a large system, this information becomes
overwhelmingly large for a maintainer to manually derive
any functional intent out of it. Moreover, for a system with
millions of lines of code, the memory requirement to hold
the structural information and perform various analysis of-
ten becomes a bottleneck.

An important step to comprehend the functional intent
of the system (or the intended functional architecture) is to
identify the business topics that exist in the system, around
which the high level components (or modules) have been im-
plemented. For example consider a large banking applica-
tion that deals with customers, bank accounts, credit cards,
interest and so on. A maintainer without any application
knowledge will find it difficult to add a new interest calcula-
tion logic. However, if it is possible to extract the business
topics such as “customer”, “interest” from the source code
and establish an association between “interest” with vari-
ous program elements, it would be of immense help to the
maintainer to identify the related functions, files, classes and
data structures and carry out the required changes for inter-
est calculation. This in turn can make a novice programmer
much more productive in maintaining a system, specially
when the software is in the order of millions of lines of code
with little documentation.

A plausible technique to identify such topics is to derive
semantic information by extracting and analyzing various
important “keywords” from the source code text [13]. It is
often the case that the original authors of the code leave
hints to the meaning of program elements in the form of
keywords in files, functions, data type names and so on. For

instance, it is highly common to use keywords like “proxy”,
“http”while implementing an http-proxy functionality. Sim-
ilarly, for a banking application one would surely like to use
a keyword like “interest” in implementing functions, classes
and data structures pertaining to interest calculation.

Assuming that the meaningful keywords do exist in pro-
gram elements, is it possible to semantically correlate these
keywords to meaningful clusters where each meaningful clus-
ter of keywords can be interpreted as a “Topic”? For in-
stance, is it possible to group all “proxy” related keywords
together into one cluster and identify it as “proxy” topic and
“authentication” related keywords into another cluster form-
ing the “authentication” topic? If this is possible, one can
subsequently establish association between the topic“proxy”
and various program elements (files, functions or data struc-
tures) pertaining to “proxy”.

This paper addresses the above problem and proposes a
human assisted approach based on the Latent Dirichlet Allo-
cation (LDA) [7] for identifying topics in source code. LDA
has been quite popular in the realm of text document classi-
fication and identifying topics from text documents. To the
best of our knowledge, This is the first attempt at applying
LDA in the context of source code analysis.

The paper is organized as follows: In the next section we
provide a brief review of the literature relevant to our work
and the necessary background information on LDA. Section
3 discusses the applicability of LDA for extracting domain
topics from source code and provides an interpretation of
the LDA model in the context of source code. A detailed
description of extracting domain topics from source code us-
ing LDA is presented in section 4. We have applied LDA on
a number of open source and proprietary systems. Section
5 presents the results obtained. Advantages and disadvan-
tages of the presented LDA based method and some of the
interesting observations made during our experimentation
are presented in Section 6. Finally, Section 7 discusses the
future research directions and concludes the paper.

2. BACKGROUND AND RELATED WORK
Researchers have long recognized the importance of lin-

guistic information such as identifier names and comments
in program comprehension. For instance, Biggerstaff et al.
[5] have suggested assignment of domain concepts as an ap-
proach to program comprehension. Tonella et al. [8] have
proposed function names and signatures to obtain domain
specific information. Anquetil et al.[3] have suggested that
the information obtained from the name of file often carry
the functional intent of the source code specified in the file.
Wilde et al.[24] have also suggested usage of linguistic in-
formation to identify the functional intent of the system.
Since then, linguistic information has been used in various
program analysis and maintenance tasks such as traceabil-
ity between external documentation and source code [4, 16],
feature location1 [17, 21, 25], identifying high level concep-
tual clones [15] and so on.

Recently, linguistic information has also been used to iden-
tify topics in source code and subsequently used for software
clustering [13] and software categorization [11].

Kuhn et al.[13] have used Latent Semantic Analysis (LSA)
[9] based approach for identifying topics in source code by

1Feature location is sometimes referred to as concept loca-
tion

semantically clustering software artifacts such as methods,
files or packages based on identifier names and comments.
Our approach differs from that of Kuhn et al. in two ways.
Firstly, and most importantly, our interpretation of a“topic”
is different from that of Kuhn. Kuhn interprets semanti-
cally clustered software artifacts (like methods, files etc.) as
topics whereas we interpret a set of semantically related lin-
guistic terms derived from identifier names and comments
as a “topic”. Another important difference is in the ap-
proach used for semantic clustering. While Kuhn et al. have
adopted LSA to cluster a set of meaningful software arti-
facts, our approach of clustering linguistic terms is based on
the Latent Dirichlet Allocation.

Kawaguchi et al. [11] uses linguistic information in source
code for automatically identifying categories and categoriz-
ing open source repositories. A cluster of related identifiers
is considered as a “category”. In our case, we consider a
cluster of terms derived from identifiers as a “topic”; thus
a topic can certainly be considered synonymous to a “cat-
egory”. However, our approach of clustering semantically
related identifier terms differs from the approach suggested
by Kawaguchi et al. [11]. Kawaguchi et al. first uses LSA to
derive pairwise similarity between the terms and then apply
a clustering algorithm to cluster similar terms together. The
LDA based approach we have adopted alleviates the need of
having two steps. Since LDA is essentially a topic modeling
technique, it not only discovers similarity between terms, it
also creates a cluster of similar terms to form a topic.

In the rest of this section, we provide a brief description of
LDA and its use in extracting topics from text documents.

2.1 LDA
Latent Dirichlet Allocation (LDA) [7] is a statistical model,

specifically a topic model, originally used in the area of nat-
ural langauge processing for representing text documents.
The basic idea of LDA is that a document can be considered
as a mixture of a limited number of topics and each mean-
ingful word in the document can be associated with one of
these topics. Given a corpus of documents, LDA attempts
to discover the following:

• It identifies a set of topics

• It associates a set of words with a topic

• It defines a specific mixture of these topics for each
document in the corpus.

LDA has been applied to extract topics from text docu-
ments. For instance, Newman et al.[19] applied LDA to de-
rive 400 topics such as “September 11 attacks”, “Harry Pot-
ter”, “Basketball” and “Holidays” from a corpus of 330000
New York Times news articles and represent each news arti-
cle as a mixture of these topics. LDA has also been applied
for identification of topics in a number of different areas. For
instance, LDA has been used to find scientific topics from
abstracts of papers published in the proceedings of the na-
tional academy of sciences [10] . McCallum et al. [18] have
proposed LDA to extract topics from social networks and
apply it to a collection of 250,000 Enron emails. A varia-
tion on LDA has also been used by Steyvers et al. [22] to
analyze 160,000 abstracts from the “citeseer” computer sci-
ence collection. Recently, Zheng et al. [6] have applied LDA
to obtain various biological concepts from a protein related
corpus.

These applications of LDA seem to indicate that the tech-
nique can be effective in identifying latent topics and sum-
marizing large corpus of text documents.

2.1.1 LDA Model
For the sake of completeness, we briefly introduce the LDA

model. A thorough and complete description of the LDA
model can be found in [7]. The vocabulary for describing
the LDA model is as follows:

word A word is a basic unit defined to be an item from a
vocabulary of size W .

document A document is a sequence of N words denoted
by d = (w1, · · · , wN) where wn is the nth word in the
sequence.

corpus A corpus is a collection of M documents denoted by
D = {d1, · · · , dM}.

In the statistical natural language processing, it is common
to model each document d as a multinomial distribution θ(d)

over T topics, and each topic zj , j = 1 · · ·T as a multino-
mial distribution φ(j) over the set of words W . In order to
discover the set of topics used and the distribution of these
topics in each document in a corpus of documents D, we
need to obtain an estimate of φ and θ. Blei et al. [7] have
shown that the existing techniques of estimating φ and θ
are slow to converge and propose a new model- LDA. The
LDA based model assumes a prior Dirichlet distribution on
θ, thus allowing the estimation of φ without requiring the
estimation of θ.

LDA assumes a generative process for creating a document
[7] as presented below.

1. choose N ∼ Poisson(ξ) : Select the number of words
N

2. θ ∼ Dir(α) : Select θ from the dirichlet distribution
parameterized by α.

3. For each wn ∈ w do

(a) Choose a topic zn ∼ Multinomial(θ)

(b) Choose a word wn from p(wn|zn, β), a multino-
mial probability φzn

In this model, various distributions namely, the set of top-
ics, topic distribution for each of the documents and word
probabilities for each of the topics are in general intractable
for exact inference [7]. Hence a wide variety of approximate
algorithms are considered for LDA. These algorithms at-
tempt to maximize likelihood of the corpus given the model.
A few algorithms have been proposed for fitting the LDA
model to a text corpus such as variational Bayes [7], expec-
tation propagation [14], and Gibbs sampling [10].

3. APPLYING LDA TO SOURCE CODE
Given that LDA has been successfully applied to large cor-

pus of text data (as discussed in Section 2.1), it is interest-
ing to explore i) how applicable it is in the context of source
code ii) how effective the technique is in identifying business
topics in a large software system. To apply LDA in source
code, we consider a software system to be a collection of
source code files and the software system is associated with

a set of business domain concepts (or topics). For instance,
the Apache web server implements functionality associated
with http-proxy, authentication, server, caching and so on.
Similarly, a database server like Postgresql implements func-
tionality related to storage management. Moreover, there
exists a many-many relationship between these topics like
authentication, storage management and the source code
files that implement these topics. Thus a source code file
can be thought of as a mixture of these domain topics.

Applying LDA to the source code now reduces to map-
ping source code entities of a software system to the LDA
model, described in Table 1. Given this mapping, applica-

LDA Model Source Code Entities
word We define domain specific keywords ex-

tracted from names of program elements
such as functions, files, data structures and
comments to be the vocabulary set with
cardinality V . A word w is an item from
this vocabulary.

document A source code file becomes a document in
LDA parlance. For our purpose, we repre-
sent a document

fd = (w1, w2, ..., wN)

to be a sequence of N domain specific key-
words.

corpus The software system

S = {f1, f2, ..., fM}

having M source code files forms the cor-
pus.

Table 1: Mapping LDA to Source Code

tion of LDA to source code corpus is not difficult. Given a
software system consisting of a set of source code files, do-
main related words are extracted from each of the source
code files. Using this, a source code file-word matrix is con-
structed where source code files form the rows, domain words
form the columns and each cell represents the weighted oc-
currence of the word, representing the column, in the source
code file representing the row. This source code file-word
matrix is provided as input to LDA. The result of LDA is a
set of topics and a distribution of these topics in each source
code file. A topic is a collection of domain words along with
the importance of each word to the topic represented as a
numeric fraction.

4. IMPLEMENTATION
We have implemented a tool for static analysis of code.

Figure 1 shows a part of this tool that specifically deals with
topic extraction, topic location identification[5, 24], visual-
ization of the topic distribution and a modularity analysis
based on domain topics.

The main input of LDA based topic extraction is a document-
word matrix wd[w, fd] = η where η is a value indicating the
importance of the word w in the file fd. We will shortly
describe an approach to compute η based on the number
and the place of occurrences of w in fd. Our current imple-
mentation uses the Gibbs sampling method [10] that uses a
markov chain monte carlo method to converge to the target

Figure 1: Tool Block diagram

distributions in an iterative manner. The detailed descrip-
tion of this method is not in scope of this paper.

Input Parameters.
Our tool, based on the LDA approach, takes two parame-

ters α and β (as described in Section 2.1.1) and creates the
distribution φ of words over topics and the distribution θ of
topics over documents. In addition to the parameters α and
β the tool also requires the number of iterations. Recall that
LDA defines a topic as a probability distribution of over all
the terms in the corpus. We have defined an user specified
cut-off value Ψ which is used to discern the most important
words for each topic.

4.1 Keyword Extraction
In order to create a document-word matrix for LDA, it is

extremely important to find out meaningful domain related
words in the source code. Approaches that apply LDA to
linguistic text documents consider each word in the docu-
ment for this purpose. However, unlike a plain text docu-
ment a source code file is a structured document and it is
definitely not appropriate to assume that each word in the
file would be domain related. Firstly, a large percentage
of words in source code files constitute the programming
language syntax, such as for, if, class, return, while

and so on. Moreover, domain keywords are often embedded
inside identifier names as subwords and identifier names need
to be split appropriately to extract the relevant subwords.
Given this observation we propose the following steps to ex-
tract meaningful keywords from source code files:

1. Fact Extraction.
2. Splitting of identifiers and comments into keywords.
3. Stemming the keywords into their respective common
roots.
4. Filtering of keywords to eliminate keywords that do not
indicate any business concept.

Fact Extraction.
Fact extraction is the process of parsing source code doc-

uments and extracting meta-data of interest such as files,
functions, function dependencies, data structures etc. We
have used source navigator[1] for extracting facts from source
code.

Identifier Splitting.
Splitting of identifiers into meaningful subwords is essen-

tial because unlike a natural language text where each word

is independent and can be found in a dictionary, source code
identifier names are generally not independent words but
a sequence of meaningful chunks of letters and acronyms
delimited by some character or through some naming con-
vention. For instance a function named “add auth info”
in httpd-2.0.53 source code constitutes of three meaning-
ful chunks of letters “add”, “auth” and “info” delimited by
“ ”.

The vocabulary we use for such meaningful chunks of let-
ters is “keyword”. Each identifier is split into a set of key-
words. In order to perform this splitting it is essential to
know how the identifier names are delimited. There are a
number of schemes such as underscore, hyphen, or through
capitalization of specific letters (camel case) as in ”getLoan-
Details”. We have implemented a regular expression based
identifier splitting program in Perl.

Stemming.
Generally keywords in source code are used both singu-

larly as well as in plural. For example “loan” and “loans”.
In our analysis it is not necessary to consider them as two
different keywords. Hence we unify all such keywords by
stemming them to their common root. Also, It is a common
practice[23, 12] to stem terms in order to improve the results
of analysis. We have used the Porter’s stemming algorithm
[20] for stemming all words into a common root.

Filtering.
Not all keywords are indicators of topics in the domain.

For instance keywords such as“get”and“set”are very generic
and a stop-words list is employed to filter out such terms.

4.2 File Keyword Mapping
Having identified a set of unique keywords for a given

software system, we now compute the wd matrix. For this
purpose, we compute a weighted sum of the number of oc-
currences of a word w in a file fd as follows:

1. We define a heuristic weightage

λ : {lt} → ℵ

that assigns a user-defined positive integer to a“location-
type” lt. A “location-type” lt denotes the structural
part of a source code file such as file name, function
name, formal parameter names, comment, data-structure
name and so on from which a keyword has been ob-
tained. The weightage given to a word obtained from a
function name would be different from a word obtained
from a data structure name.

2. The importance factor wd[w, fd] for a word w occur-
ring in the file fd is computed by the weighted sum
of the frequency of occurrences of w for each location
type lti in a source code file fd. That is,

wd[w, fd] =
X

lti

λ(lti)× ν(w, fd, lti)

where ν(w, fd, lti) denotes the frequency of occurrence
of the word w in the location type lti of the source file
fd.

In order to illustrate the calculation of the importance fac-
tor wd consider the following code snippet from the file Or-
derDetails.java.

public class OrderDetails implements java.io.Serializable {
private String orderId;
private String userId;
private String orderDate;
private float orderValue;
private String orderStatus;

public String getOrderStatus() {
return(orderStatus);

}
...
...

}

As discussed in section 4.1, identifier names are split to
get meaningful domain words and importance factor calcu-
lated for each of the words. One such word that is extracted
from the above code snippet is “Order”which occurs in com-
ments and names of different type of identifiers such as in
class name, attribute name and method name. These differ-
ent types of sources for words constitute our set of location
types lt. Generally, in an object oriented system, classes
represent domain objects and their names are more likely
to yield domain words that are important for that class.
Hence, λ(class) generally is assigned higher value by do-
main experts than λ(attribute). Let us assume that in this
particular example λ(class) equals 2, λ(attribute) equals 1
and λ(method) equals 1. The importance factor of the word
“Order” in the above code snippet as calculated according
to the formula given above is 7.

wd[Order, OrderDetails.java] = 2 ∗ 1 + 1 ∗ 4 + 1 ∗ 1 = 7

Similarly, weighted occurrence is calculated for other words
such as “details”, “user” and “status”.

4.3 Topic labeling
LDA could not satisfactorily derive a human understand-

able label for an identified topic. In most of the cases, the
terms from which a label can be derived are abbreviations
of business concepts or acronyms. As a result it becomes
hard to create a meaningful label for a topic automatically.
In the current version of the tool, identified topics have been
labeled manually.

5. CASE STUDIES
We have tested our approach on a number of open source

and proprietary systems. In the rest of this section we dis-
cuss the results obtained using some of the topics as exam-
ples.

5.1 Topic Extraction for Apache
We extracted 30 topics for Apache. For the sake of brevity

we list only two topics, namely “SSL” and “Logging”. Table
1(a) lists the top keywords for topic “SSL” and their corre-
sponding probability of occurrence when a random keyword
is generated from the topic “SSL”.

Our tool is able to extract not just the domain topics,
but also infrastructure-level topics and cross cutting topics.
For instance, “logging” is a topic that cuts across files and
modules. Our tool, based on LDA, is able to cluster together
all logging related keywords together as shown in table 1(b)
that lists the top keywords for topic “Logging” and their
corresponding probability values.

(a) Topic labeled as SSL

Keyword Probability
ssl 0.373722

expr 0.042501
init 0.033207

engine 0.026447
var 0.022222
ctx 0.023067

ptemp 0.017153
mctx 0.013773

lookup 0.012083
modssl 0.011238

ca 0.009548

(b) Topic labeled as Logging

Keyword Probability
log 0.141733

request .036017
mod 0.0311
config 0.029871
name 0.023725

headers 0.021266
autoindex 0.020037

format 0.017578
cmd 0.01512

header 0.013891
add 0.012661

Table 2: Sample Topics extracted from Apache
source code

5.2 Topic Extraction For Petstore
In order to investigate the effect of naming on topic ex-

traction results we considered Petstore, a J2EE blueprint
implementation by Sun Microsystems. Being a reference
J2EE implementation, it has followed good java naming con-
ventions and a large number of identifiers have meaningful
names.

(a) Topic labeled as Con-
tact Information

Keyword Probability
info 0.418520

contact 0.295719
email 0.050116

address 0.040159
family 0.040159
given 0.036840

telephone 0.026884
by 0.000332

(b) Topic labeled as Ad-
dress Information

Keyword Probability
address 0.398992
street 0.105818
city 0.055428
code 0.055428

country 0.055428
zip 0.055428

name1 0.050847
state 0.046267

name2 0.046267
end 0.005039
add 0.009548

Table 3: Sample Topics extracted from petstore
source code

As shown in table 2(a) we are able to successfully group
all “contact information” related terms together. However,
what is more significant in this example is that the top key-
words “info”, “contact” are meaningful and indicative of the
probable name of the topic. For example if we concatenate
these two keywords into “info contact” it can be considered
as a valid label for the “contact information” topic.

Similarly, even in the case of “address information” topic,
shown in table 2(b), the concatenation of the top keywords
“address” and “street” can be used to label the “address in-
formation” topic. It can be observed from the sample topics
extracted that good naming convention yields more mean-
ingful names thereby simplifying the process of labeling the
topics.

5.3 Synonymy and Polysemy resolution
One of the key factors in extracting coherent topics and

grouping semantically related keywords together is the abil-

ity of the algorithm employed to resolve synonymy-different
words having the same meaning. We have observed that our
tool is able to satisfactorily resolve synonymy to a good ex-
tent since LDA models topics in a file and words in a topic
using multinomial probability distributions. For instance
consider the topic labeled as “transaction” in PostgreSQL
shown in table 5.3. LDA has identified that “transaction”
and “xact” are synonymous and grouped them together in a
single cluster as shown below.

Keyword Probability
transaction 0.149284
namespace 090856

commit 0.035349
xact 0.035349

visible 0.029506
current 0.029506
abort 0.026585
names 0.026585

command 0.023663
start 0.020742
path 0.017821

Table 4: Transaction and Xact Synonymy resolution
by LDA

What’s more interesting is the fact that our tool has been
able to resolve polysemy-same words having different mean-
ing in source code. A polyseme can appear in multiple do-
main topics depending on the context. The reason for our
tool to be able to identify polyseme is not difficult to under-
stand. Note that LDA models a topic as a distribution of
terms; therefore it is perfectly valid for a term to appear in
two topics with different probability values. Furthermore,
LDA tries to infer a topic for a given term with the knowl-
edge of the context of the word, i.e. the document where
the word is appearing. For instance, in Linux-kernel source
code we observed that the term “volume” has been used in
the context of sound control as well as in the context of file
systems. LDA is able to differentiate between these different
uses of the term and has grouped the same term in different
topics.

6. DISCUSSION
In this section we discuss various factors that impact the

results obtained. Subsequently we will discuss benefits and
limitations of our approach.

6.1 Effect of number of Topics
Our approach for topic extraction accepts the number of

topics to be extracted as an input from the user. We have
observed that varying the number of topics has a signifi-
cant impact on polysemy resolution. For instance, consider
the example of polysemy resolution of the keyword“volume”
in Linux-kernel, discussed in subsection 5.3. We have con-
ducted our experiment on Linux-kernel source code twice.
In both the times we have kept all the parameters, namely
α, β the number of iterations and the cut-off threshold Ψ
same except for the number of topics. In the first experiment
the number of topics T was set to 50 and in the second ex-
periment T was set to 60. In both these experiments, of the
total topics extracted two topics were “sound” related topics

and one topic for “file systems”. Table 6.1 lists the probabil-
ities of keyword “volume” in “sound” and “file systems” topic
for both the experiments.

Topic
type

’Volume’ probability
for Experiment1
with T=50

’Volume’ probability
for Experiment2
with T=60

Sound
topic 1

0.024 0.032

Sound
topic 2

0.009 0.009

file sys-
tems
topic

< 0.0002 0.004

Table 5: Effect of number of topics on polysemy
resolution in Linux-kernel

In our experiments we have used a value of the threshold
Ψ to be 0.001 for determining whether a keyword belongs
to a topic or not. If the probability of a keyword associated
with a topic is less than 0.001 then we do not consider that
keyword as indicator of that topic. In view of this, it can
be observed from the table 6.1 that in experiment 1 the
keyword “volume” has a probability of less than 0.0002 for
topic “file systems”. Hence “volume” is associated with only
the two sound related topics and not with the “file systems”
topic. However, in experiment 2 when the number of topics
was increased to 60, the probability of “volume” for topic
“file systems” is 0.004. This probability is greater than our
threshold 0.001 and hence “volume” is also considered as
an indicator for “file systems” topic apart from the sound
related topics. The polysemy in the keyword “volume” is
revealed only in the second experiment with 60 topics.

6.2 Discovering optimal number of Topics
The problem of identifying optimal number of topics is not

specific to source code alone. Topic extraction from text doc-
uments faces a very similar problem. Griffiths and Steyvers
recommend trying different numbers of topics T and suggest
using the maximum likelihood method on P (w|T) [10]. Ap-
plying this technique to extract topics from Linux suggests
that the optimal number of topics in the case of Linux is 270
as shown in figure 2.

Figure 2: Inferring optimum number of topics for
Linux

However, automatically inferring the number of topics by
maximizing the likelihood is not without problems.

Figure 3: log-likelihood graph for our proprietary
system

We applied our tool to extract topics for a very large pro-
prietary business application having multi-million lines of
C code. The number of topics predicted using the likeli-
hood method was much larger than what the architects and
domain experts of the proprietary system considered reason-
able. As shown in figure 3, likelihood peaked at T = 600
suggesting that the optimal number of topics for our system
was 600. However, the architects and domain experts felt
that the resonable number of topics to be around 100.

6.3 Effect ofα and β

As discussed in section 2.1.1, the LDA model accepts two
parameters α and β. α controls the division of documents
into topics and β controls division of topics into words.
Larger values of β yield coarser topics and larger values of
α yields coarser distribution of document into topics. Hence
the right value of α and β is needed to derive good quality
topics and assignment of topics to documents.

Some of the implementations of LDA estimate these val-
ues on-the-fly while other implementations rely on the user
to provide appropriate values. In our implementation the
values of α and β needs to be provided by the user.

6.4 Human Intervention
Even though LDA based topic extraction presented in this

paper is automatic and unsupervised, we believe that human
intervention is necessary in a number of aspects to achieve
results of acceptable quality. In this subsection we point
out areas of our method which would be helped by human
intervention.

Expert delineated Keyword Filtering:.
Both keyword extraction and subsequent filtering has im-

pact on the quality of the results obtained. The vocabulary
of source code is much smaller than that of natural language
text corpus and hence the effect of missing or incorrect terms
is much stronger. Also, in the context of keyword extraction
from identifiers in the program, we have observed that not all
identifiers are equally good indicators of the business topics.
For this purpose we have introduced the weighing scheme λ
as described in Section 4.2 where an expert, for instance, can
assign more weight to file names over say comments in the
program. Human intervention can also improve the filtering
of keywords by identifying infrastructure and domain spe-
cific stop words. For instance “EJB”, “get”, “set” are some
of the common keywords which needs to be filtered out.

Number of Topics:.
As discussed in section 6.2, the log-likelihood method for

estimating the number of topics is not always appropriate
and in a number of cases the number of topics is better
supplied by domain experts and architects of the system.
During our experiments we have observed that one needs to
try different number of topics and repeat the topic extraction
process to get a set of topics of acceptable quality.

Topic validation and labeling:.
In our experience topic extraction has been an iterative

process. Topics extracted initially are evaluated and based
on the results keyword extraction and filtering heuristics are
updated and the α and β parameters varied to extract better
topics. It is difficult to automatically evaluate the quality
of topics obtained. We needed a domain expert who can
manually examine the cluster of terms and check if it truly
represents a domain topic. Moreover, when a domain topic
has been identified labeling has to be done manually.

7. CONCLUSION AND FUTURE WORK
In this paper we have investigated the applicability of

LDA in the context of program comprehension and proposed
an approach based on LDA for topic extraction from source
code. Experiments on several open source and proprietary
systems revealed that our tool is able to satisfactorily ex-
tract some of the domain topics but not all. We also made
an observation that certain human input is needed in order
to improve the quality of topics extracted.

One disadvantage of LDA is that it does not derive any
interrelationship between the extracted topics nor identify
topics at various level of granularity. As part of our future
work we plan to investigate approaches to extract topics at
various levels of granularity and identify various relations
between them. we also intend to compare other approaches
to topics extraction based on LSA to the LDA based ap-
proach presented here. Finally, We believe that the pro-
posed approach based on LDA for business topic extraction
is promising and warrants further research and validation.

8. REFERENCES
[1] Source navigator 5.4.1.

http://sourcenav.sourceforge.net, 2003.

[2] P. Anderson and M. Zarins. The codesurfer software
understanding platform. In IWPC, pages 147–148.
IEEE Computer Society, 2005.

[3] N. Anquetil and T. C. Lethbridge. Recovering
software architecture from the names of source files.
Journal of Software Maintenance: Research and
Practice, 11:201–221, 1999.

[4] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia,
and E. Merlo. Recovering traceability links between
code and documentation. IEEE Transactions in
Software Engineering, 28(10):970–983, 2002.

[5] T. J. Biggerstaff, B. G. Mitbander, and D. Webster.
Program understanding and the concept assignment
problem. Communications of the ACM, 37(5):72–83,
May 1994.

[6] Z. Bin, M. David, and L. Xinghua. Identifying
biological concepts from a protein-related corpus with
a probabilistic topic model. BMC Bioinformatics, 7,
2006.

[7] D. Blei, A. Ng, and M. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[8] B. Caprile and P. Tonella. Nomen est omen:
Analyzing the language of function identifiers. In
Proceedings of the Sixth Working Conference on
Reverse Engineering, 1999.

[9] S. Deerwester, S. T. Dumais, G. W. Furnas, and T. K.
Landauer. Indexing by latent semantic analysis.
Journal of the American Society for Information
Science, 41:391–407, 1990.

[10] T. Griffiths and M. Steyvers. Finding scientific topics.
In Proceedings of the National Academy of Sciences,
pages 5228–5235, 2004.

[11] S. Kawaguchi, P. K. Garg, M. Matsushita, and
K. Inoue. MUDABlue: An automatic categorization
system for open source repositories. In APSEC, pages
184–193. IEEE Computer Society, 2004.

[12] A. Kuhn. Semantic clustering: Making use of
linguistic information to reveal concepts in source
code. Master’s thesis, University of Bern, 2006.

[13] A. Kuhn, S. Ducasse, and T. Gı̂rba. Semantic
clustering: Identifying topics in source code. IST,
2006. To appear.

[14] J. Lafferty and T. Minka. Expectation-propagation for
the generative aspect model. In Proceedings of the
18th Conference on Uncertainty in Artificial
Intelligence, 2002.

[15] A. Marcus and J. I. Maletic. Identification of high-level
concept clones in source code. In Proceedings of the
16th International Conference on Automated Software
Engineering (ASE 2001), pages 107–114, Nov. 2001.

[16] A. Marcus and J. I. Maletic. Recovering
documentation-to-source-code traceability links using
latent semantic indexing. In International Conference
on Software Engineering, pages 125–134. IEEE
Computer Society Press, may 2003.

[17] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic.
An information retrieval approach to concept location
in source code. In Proceedings of the 11th Working
Conference on Reverse Engineering (WCRE 2004),
pages 214–223, Nov. 2004.

[18] A. McCallum, A. Corrada-Emmanuel, and X. Wang.
Topic and role discovery in social networks. In L. P.
Kaelbling and A. Saffiotti, editors, IJCAI, pages
786–791. Professional Book Center, 2005.

[19] D. Newman, C. Chemudugunta, P. Smyth, and
M. Steyvers. Analyzing entities and topics in news
articles using statistical topic models. In Lecture Notes
on Computer Science. Springer-Verlag, 2006.

[20] M. F. Porter. An algorithm for suffix stripping.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1997.

[21] D. Poshyvanyk and A. Marcus. Combining formal
concept analysis with information retrieval for concept
location in source code. In ICPC, pages 37–48. IEEE
Computer Society, 2007.

[22] M. Steyvers, P. Smyth, M. Rosen-Zvi, and T. L.
Griffiths. Probabilistic author-topic models for
information discovery. In W. Kim, R. Kohavi,
J. Gehrke, and W. DuMouchel, editors, KDD, pages
306–315. ACM, 2004.

[23] S. Ugurel, R. Krovetz, C. L. Giles, D. M. Pennock,
E. J. Glover, and H. Zha. What’s the code? automatic
classification of source code archives. In Proceedings of
the eigth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 632–638,
2002.

[24] N. Wilde, M. Buckellew, H. Page, V. Rajlich, and
L. Pounds. A comparison of methods for locating
features in legacy software. Journal of Systems and
Software, 65(2):105–114, 2003.

[25] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang.
Sniafl: Towards a static noninteractive approach to
feature location. ACM Transactions on Software
Engineering and Methodology, 15(2):195–226, April
2006.

