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Abstract

Transliterating named entities from one lan-
guage into another can be approached as
neural machine translation (NMT) prob-
lem, for which we use deep attentional
RNN encoder-decoder models. To build
a strong transliteration system, we apply
well-established techniques from NMT,
such as dropout regularization, model en-
sembling, rescoring with right-to-left mod-
els, and back-translation. Our submission
to the NEWS 2018 Shared Task on Named
Entity Transliteration ranked first in several
tracks.

1 Introduction

Transliteration of Named Entities (NEs) is defined
as the phonetic translation of names across lan-
guages (Knight and Graehl, 1998). It is an im-
portant part of a number of natural language pro-
cessing tasks, and machine translation in particular
(Durrani et al., 2014; Sennrich et al., 2016c).

Machine transliteration can be approached as
a sequence-to-sequence modeling problem (Finch
et al., 2016; Ameur et al., 2017). In this work, we
explore the Neural Machine Translation (NMT)
approach based on an attentional RNN encoder-
decoder neural network architecture (Sutskever
et al., 2014), motivated by its successful applica-
tion to other sequence-to-sequence tasks, such as
grammatical error correction (Yuan and Briscoe,
2016), automatic post-editing (Junczys-Dowmunt
and Grundkiewicz, 2016), sentence summarization
(Chopra et al., 2016), or paraphrasing (Mallinson
et al., 2017). We apply well-established techniques
from NMT to machine transliteration building a
strong system that achieves state-of-the-art-results.
The techniques we exploit include:

• Regularization with various dropouts prevent-
ing model overfitting;

• Ensembling strategies involving indepen-
dently trained models and model checkpoints;

• Re-scoring of n-best list of candidate translit-
erations by right-to-left models;

• Using synthetic training data generated via
back-translation.

The developed system constitutes our submis-
sion to the NEWS 2018 Shared Task1 on Named
Entity Transliteration ranked first in several tracks.

We describe the shared task in Section 2, includ-
ing provided data sets and evaluation metrics. In
Section 3, we present the model architecture and
adopted NMT techniques. The experiment details
are presented in Section 4, the results are reported
in Section 5, and we conclude in Section 6.

2 Shared task on named entity
transliteration

The NEWS 2018 shared task (Chen et al., 2018)
continues the tradition from the previous tasks (Xi-
angyu Duan et al., 2016, 2015; Zhang et al., 2012)
and focuses on transliteration of personal and place
names from English or into English or in both di-
rections.

2.1 Datasets

Five different datasets have been made available for
use as the training and development data. The data
for Thai (EnTh, ThEn) comes from the NECTEC
transliteration dataset. The second dataset is the
RMIT English-Persian dataset (Karimi et al., 2006,
2007) (EnPe, PeEn). Chinese (EnCh, ChEn)
and Vietnamese (EnVi) data originates in Xinhua

1http://workshop.colips.org/news2018

http://workshop.colips.org/news2018


ID Languages Train Dev Test

EnTh English-Thai 30,781 1000 1000
ThEn Thai-English 27,273 1000 1000

EnPe English-Persian 13,386 1000 1000
PeEn Persian-English 15,677 1000 1000

EnCh English-Chinese 41,318 1000 1000
ChEn Chinese-English 32,002 1000 1000
EnVi English-Vietnamese 3,256 500 500

EnHi English-Hindi 12,937 1000 1000
EnTa English-Tamil 10,957 1000 1000
EnKa English-Kannada 10,955 1000 1000
EnBa English-Bangla 13,623 1000 1000
EnHe English-Hebrew 10,501 1000 1000
HeEn Hebrew-English 9,447 1000 1000

Table 1: Official data sets in NEWS 2018 which
we use in our experiments.

transliteration datasets (Haizhou et al., 2004), and
the VNU-HCMUS dataset (Cao et al., 2010; Ngo
et al., 2015), respectively. Hindi, Tamil, Kannada,
Bangla (EnHi, EnTa, EnKa, EnBa), and Hebrew
(EnHe, HeEn) are provided by Microsoft Research
India2. We do not evaluate our models on the
dataset from the CJK Dictionary Institute as the
data is not freely available for research purposes.

We use 13 data sets for our experiments (Ta-
ble 1). The data consists of genuine transliterations
or back-translations or includes both.

No other parallel nor monolingual data are al-
lowed for the constrained standard submissions that
we participate in.

2.2 Evaluation
The quality of machine transliterations is evalu-
ated with four automatic metrics in the shared task:
word accuracy, mean F-score, mean reciprocal rank,
and MAPref (Chen et al., 2018). As a main eval-
uation metric for our experiments we use word
accuracy (Acc) on the top candidate:

Acc =
1

N

N∑
i=1

{
1 if ci,1matches any of ri,j
0 otherwise

.

The closer the value to 1.0, the more top can-
didates ci,1 are correct transliterations, i.e. they
match one of the references ri,j . N is the total
number of entries in a test set.

3 Neural machine translation

Our machine transliteration system is based on
a deep RNN-based attentional encoder-decoder

2http://research.microsoft.com/india

model that consists of a bidirectional multi-layer
encoder and decoder, both using GRUs as their
RNN variants (Sennrich et al., 2017b). It utilizes
the BiDeep architecture proposed by Miceli Barone
et al. (2017), which combines deep transitions with
stacked RNNs. We employ the soft-attention mech-
anism (Bahdanau et al., 2014), and leave hard
monotonic attention models (Aharoni and Gold-
berg, 2017) for future work. Layer normalization
(Ba et al., 2016) is applied to all recurrent and
feed-forward layers, except for layers followed by
a softmax. We use weight tying between target and
output embeddings (Press and Wolf, 2017).

The model operates on word level, and no spe-
cial adaptation is made to the model architecture
in order to support character-level transliteration,
except data preprocessing (Section 4.1).

3.1 NMT techniques

Regularization Randomly dropping units from
the neural network during training is an effective
regularization method that prevents the model from
overfitting (Srivastava et al., 2014).

For RNN networks, Gal and Ghahramani (2016)
proposed variational dropout over RNN inputs and
states, which we adopt in our experiments. Follow-
ing Sennrich et al. (2016a), we also dropout entire
source and target words (characters in our case)
with a given probability.

Model ensembling Model ensembling leads to
consistent improvements for NMT (Sutskever et al.,
2014; Sennrich et al., 2016a; Denkowski and Neu-
big, 2017). An ensemble of independent models
usually outperforms an ensemble of different model
checkpoints from a single training run as it results
in more diverse models in the ensemble (Sennrich
et al., 2017a). As an alternative method for check-
point ensembles, Junczys-Dowmunt et al. (2016)
propose exponential smoothing of network param-
eters averaging them over the entire training.

We combine both methods and build ensembles
of independently trained models with exponentially
smoothed parameters.

Re-scoring with right-left models Re-scoring
of an n-best list of candidate translations obtained
from one system by another allows to incorporate
additional features into the model or to combine
multiple different systems that cannot be easily
ensembled. Sennrich et al. (2016a, 2017a), for re-
scoring a NMT system, propose to use separate

http://research.microsoft.com/india


ID Original +Synthetic R

EnTh 59,131 154,232 ×1
ThEn 58,872 153,973 ×1

EnPe 32,321 127,314 ×1
PeEn 32,616 127,609 ×1

EnCh 81,252 176,367 ×1
ChEn 80,818 175,933 ×1
EnVi 2,756 139,175 ×16

EnHi 12,607 145,507 ×4
EnTa 10,702 137,887 ×4
EnKa 10,662 137,727 ×4
EnBa 13,389 148,635 ×4
EnHe 18,558 132,070 ×2
HeEn 18,388 131,730 ×2

Table 2: Comparison of training data sets without
and with synthetic examples. The original data are
oversampled R times in synthetic data sets.

models trained on reversed target side that produce
the target text from right-to-left.

We adopt the following re-ranking technique: we
first ensemble four standard left-to-right models to
produce n-best lists of 20 transliteration candidates
and then re-score them with two right-to-left mod-
els and re-rank.

Back-translation Monolingual data can be back-
translated by a system trained on the reversed lan-
guage direction to generate synthetic parallel cor-
pora (Sennrich et al., 2016b). Additional training
data can significantly improve a NMT system.

As the task is organized under a constrained set-
tings and no data other than that provided by orga-
nizers is allowed, we consider the English exam-
ples from all datasets as our monolingual data and
use back-translations and “forward-translations” to
enlarge the amount of parallel training data.

4 Experimental setting

We train all systems with Marian NMT toolkit3,4

(Junczys-Dowmunt et al., 2018).

4.1 Data preprocessing

We uppercase5 and tokenize all words into se-
quences of characters and treat them as words.
Whitespaces are replaced by a special character
to be able to reconstruct word boundaries after de-
coding.

3https://marian-nmt.github.io
4The training scripts are available at http://github.

com/snukky/news-translit-nmt.
5The evaluation metric is case-insensitive.

We use the training data provided in the NEWS
2018 shared task to create our training and vali-
dation sets, and the official development set as an
internal test set. Validation sets consists of ran-
domly selected 500 examples that are subtracted
from the training data. If a name entity has alterna-
tive translations, we add them to the training data
as separate examples with identical source side.
The number of training examples varies between
ca. 2,756 and 81,252 (Table 2).

4.2 Model architecture

We use the BiDeep model architecture (Miceli
Barone et al., 2017) for all systems. The model
consists of 4 bidirectional alternating stacked en-
coders with 2-layer transition cells, and 4 stacked
decoders with the transition depth of 4 in the base
RNN of the stack and 2 in the higher RNNs. We
augment it with layer normalization, skip connec-
tions, and parameter tying between all embeddings
and output layer. The RNN hidden state size is set
to 1024, embeddings size to 512. Source and target
vocabularies are identical. The size of the vocabu-
lary varies across language pair and is determined
by the number of unique characters in the training
data.

4.3 Training settings

We limit the maximum input length to 80 char-
acters during training. Variational dropout on all
RNN inputs and states is set to 0.2, source and
target dropouts are 0.1. A factor for exponential
smoothing is set to 0.0001.

Optimization is performed with Adam (Kingma
and Ba, 2014) with a mini-batch size fitted into
3GB of GPU memory6. Models are validated and
saved every 500 mini-batches. We stop training
when the cross-entropy cost on the validation set
fails to reach a new minimum for 5 consecutive val-
idation steps. As a final model we choose the one
that achieves the highest word accuracy on the vali-
dation set. We train with learning rate of 0.003 and
decrease the value by 0.9 every time the validation
score does not improve over the current best value.
We do not change any training hyperparameters
across languages.

Decoding is done by beam search with a beam
size of 10. The scores for each candidate translation
are normalized by sentence length.

6We train all systems on a single GPU.

https://marian-nmt.github.io
http://github.com/snukky/news-translit-nmt
http://github.com/snukky/news-translit-nmt


System EnTh ThEn EnPe PeEn EnCh ChEn EnVi EnHi EnTa EnKa EnBa EnHe HeEn

No dropouts 0.434 0.467 0.566 0.365 0.754 0.306 0.390 0.466 0.451 0.387 0.450 0.616 0.286
Baseline model 0.467 0.503 0.594 0.390 0.739 0.347 0.458 0.481 0.455 0.418 0.465 0.632 0.284
Right-left model 0.462 0.502 0.598 0.402 0.751 0.351 0.458 0.476 0.446 0.403 0.476 0.606 0.287
Ensemble ×4 0.477 0.526 0.605 0.407 0.752 0.366 0.478 0.504 0.469 0.438 0.489 0.633 0.291
+ Re-ranking 0.475 0.534 0.606 0.436 0.765 0.365 0.494 0.515 0.483 0.441 0.488 0.638 0.294
+ Synthetic data 0.484 0.728 0.610 0.585 0.760 0.759 0.496 0.519 0.471 0.455 0.484 0.626 0.615

Test set 0.167 0.328 — — 0.304 0.276 0.502 0.333 0.237 0.340 0.461 0.187 0.153

Table 3: Results (Acc) on the official NEWS 2018 development set. Bolded systems have been evaluated
on the official test set (last row).

4.4 Synthetic parallel data

English texts from parallel training data from all
datasets are used as monolingual data from which
we generate synthetic examples7. We do not make
a distinction between authentic examples or actual
back-translations, and collect 95,179 unique En-
glish named entities in total.

We back-translate English examples using the
systems trained on the original data and use them as
additional training data for training the systems into
English. For systems from English into another lan-
guage, we translate English texts with analogous
systems creating “forward-translations”. To have a
reasonable balance between synthetic and original
examples, we oversample the original data several
times (Table 2). The number of oversampling repe-
titions depends on the language pair, for instance,
the Vietnamese original data are oversampled 16
times, while Chinese data are not oversampled at
all.

5 Results on the development set

We evaluate our methods on the official develop-
ment set from the NEWS 2018 shared task (Ta-
ble 3). Results for systems that do not use ensem-
bles are averaged scores from four models.

Regularization with dropouts improves the word
accuracy for all language pairs except English-
Chinese. As expected, model ensembling brings
significant and consistent gains. Re-ranking with
right-to-left models is also an effective method rais-
ing accuracy, even for languages for which a single
right-to-left model itself is worse then a baseline
left-to-right model, e.g. for EnHi, EnKa and EnHe
systems.

The scale of the improvement for systems trained
on additional synthetic data depends on the method

7More specifically, we use the source side of EnTh, EnPe,
EnCh, EnVi, EnHi, EnTa, EnKa, EnBa, EnHe, and the target
side of ThEn, PeEn, ChEn, HeEn data sets.

that the synthetic examples are generated with: the
systems into English benefit greatly from back-
translations8, while other systems that were sup-
plied by forward-translations do not improve much
or even slightly downgrade the accuracy.

6 Official results and conclusions

As final systems submitted to the NEWS 2018
shared task we chose ones that achieved the best
performance on the development set (Table 3, last
row). On the official test set, our systems are
ranked first for most language pairs we experi-
mented with9.

The results show that the neural machine trans-
lation approach can be employed to build efficient
machine transliteration systems achieving state-of-
the-art results for multiple languages and providing
strong baselines for future work.
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