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Abstract
The Carnegie Mellon multi-engine machine translation software merges output from sev-

eral machine translation systems into a single improved translation. This improvement is sig-
nificant: in the recent NIST MT09 evaluation, the combined Arabic-English output scored 5.22
BLEU points higher than the best individual system. Concurrent with this paper, we release
the source code behind this result consisting of a recombining beam search decoder, the com-
bination search space and features, and several accessories. Here we describe how the released
software works and its use.

1. Introduction

Research in machine translation has led to many different translation systems, each
with strengths and weaknesses. System combination exploits these differences to ob-
tain improved output. Many approaches to system combination exist; here we discuss
an improved version of (Heafield et al., 2009) that, unlike most other approaches, syn-
thesizes new word orderings. Since September 2008, the code we release has been
completely rewritten in multithreaded C++ that produces 2.9 combined translations
per second. Along with the core system combination code, we also release language
modeling and evaluation tools of use to the machine translation community. All of
these are available for download at http://kheafield.com/code/mt/.

The scheme has several parts. Hypotheses are aligned in pairs using the publicly
available METEOR (Banerjee and Lavie, 2005) aligner. A search space (Heafield et al.,
2009) is defined on top of these alignments. Beam search is used to make this search
tractable. Recombination increases efficiency and diversity by packing hypotheses
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that extend in the same way. Hypotheses are scored using a linear model that com-
bines a battery of features detailed in Section 3. Model weights are tuned using Z-
MERT (Zaidan, 2009).

The remainder of this paper is organized as follows. Section 2 surveys other system
combination techniques. In Section 3 we describe the components of the system with
reference to code while Section 4 shows how to run the system. Section 5 summarizes
results in recent evaluations and Section 6 concludes.

2. Related Work

Confusion networks (Rosti et al., 2008; Karakos et al., 2008) are a popular form of
system combination. This approach combines k-best output from multiple systems. A
single k-best list entry is selected as the backbone, which determines word order. The
backbone may be selected greedily using some agreement metric or jointly with the
full decoding problem (Leusch et al., 2009). Once the backbone is selected, every other
k-best entry is aligned to the backbone using exact matches and position information.
Translation Edit Rate (Snover et al., 2006) is commonly used for this purpose, with the
substitution operation corresponding to alignment. This alignment is still incomplete;
unaligned words are aligned to the empty word, corresponding to the deletion (if
in the backbone) or insertion (if in a different sentence) operations of TER. Within
each alignment, entries vote on word substitution, including with the empty word.
Selection of the backbone and word substitution are the only options considered by
confusion networks.

The next type of system combination jointly resolves word order and lexical choice.
In our approach, we permit the backbone to switch as often as each word. Closely
related work (He and Toutanova, 2009) uses a reordering model like Moses (Koehn
et al., 2007) to determine word order. While they resolve ambiguous position-based
alignments jointly with decoding, we use METEOR to greedily resolve ambiguities re-
sulting from knowledge-based alignments. Since these approaches allow many new
word orders, both employ features to control word order by counting n-gram agree-
ment between the system outputs and candidate combination. We use jointly tun-
able n-gram and system weights for these features; other work uses tunable system
weights for at most unigrams (Zhao and He, 2009).

3. Components

3.1. Alignment

Rather than align to a single backbone, we treat single best outputs from each sys-
tem symmetrically. All pairs are aligned using METEOR. It identifies, in decreasing
order of priority:

1. Case-insensitive exact matches
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2. Snowball (Porter, 2001) stem matches
3. Shared WordNet (Fellbaum, 1998) synonyms
4. Unigram paraphrases from the TERp (Snover et al., 2008) database

By contrast, confusion networks typically stop with exact matches and use position-
based techniques to generate additional alignments. We eschew position-based meth-
ods since they can align content words with function words, leading to dropped con-
tent not noticed by BLEU (Karakos, 2009). In fact, we replaced the position-based
artificial alignments of (Heafield et al., 2009) with the paraphrase database, finding
similar performance. The MEMT/Alignmentdirectory contains a Java class that calls the
publicly available METEOR code to perform pairwise alignments. Since METEOR in-
cludes the WordNet database and a tool to extract the paraphrases, neither WordNet
nor TERp is required.

3.2. Search Space

The search space is defined on top of the aligned sentences. A hypothesis starts
with the first word of some sentence. It can continue to follow that sentence, or can
switch to following a different sentence after any word. What results is a hypothesis
that weaves together parts of several system outputs. In doing so, we must ensure
that pieces cover the sentence without duplication and are fluent across switches.
Duplication is prevented by ensuring that a hypothesis contains at most one word
from each group of aligned words. A hypothesis may only switch to the first unused
word from another output, thereby ensuring that the hypothesis covers the entire
sentence. However, this can sometimes be too conservative, so a heuristic permits
skipping over words in some cases (Heafield et al., 2009). That paper introduced two
choices of heuristic and a radius parameter; here we use the length heuristic with ra-
dius 5. Code for the search space appears in the MEMT/Strategy directory. We use
features to reward fluency.

3.3. Features

Since the search space so easily switches between sentences, maintaining fluency
is crucial. A number of features are used for scoring partial and complete hypotheses:
Length The hypothesis length, as in Moses (Koehn et al., 2007). This compensates for

the linear impact of length on other features.
Language Model Log probability from a Suffix Array (Zhang and Vogel, 2006) or an

ARPA format language model. These appear in the lm directory with a simple
common interface. We avoid direct dependence on the SRI (Stolcke, 2002) toolkit
by providing our own equivalent implementation of inference.

Backoff Average n-gram length found in the language model. This provides limited
tunable control over backoff behavior.

Match For each small n and each system, the number of n-gram matches between
the hypothesis and system.
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Each feature class has a directory under MEMT/Feature. Features have a common in-
terface designed to make adding additional features easy. All features are combined
in a linear model, which is equivalent to a log-linear model with each feature expo-
nentiated. Model weights, especially for the match features, are heavily dependent on
the underlying systems. We therefore provide scripts in MEMT/scripts/zmert to tune
weights using Z-MERT (Zaidan, 2009). With 20 or more features, the optimization
part of each iteration typically takes longer than does decoding.

3.4. Beam Search

Since the search space is exponential in the sentence length, we use beam search
with recombination. The beam contains a configurable number of hypotheses of equal
length; we typically keep 500 hypotheses. In order to increase beam diversity and
speed decoding, we recombine hypotheses that will extend in the same way and score
proportionally. Hypotheses to recombine are detected by hashing the search space
state, feature state, and hypothesis history up to a length requested by the features.
Recombined hypotheses are packed into a single hypothesis that maintains pointers
to the packed hypotheses. At the end of the sentence, these packed hypotheses com-
prise a lattice where each node is labeled with the maximum-score path back to the
beginning of the sentence. This enables efficient k-best extraction. The beam search
decoder is factored into MEMT/Decoder. It only knows about the search space and fea-
tures via template arguments and, therefore, may be independently useful for other
left-to-right beam search problems.

4. Running Combination

4.1. Requirements

We assume a UNIX environment with a C++ compiler, Java, and Python. Scripts
are provided in install/ to install Boost, Boost Jam, ICU, and Ruby without requiring
root access. Compiling consists of running bjam release in the MEMT directory. See
the README file for more information.

A separate tuning set is required to learn parameter weights. This should be held
out from system training or tuning data. We recommend reserving at least 400 seg-
ments for this purpose. A language model is also required; many use the SRILM
toolkit (Stolcke, 2002) to produce ARPA files for this purpose. It should be tokenized
the same way as the system outputs. A tokenizer is not provided; one can be down-
loaded from http://www.statmt.org/wmt09/scripts.tgz (Callison-Burch et al., 2009).

4.2. Alignment

The MEMT/Alignment/MatcherMEMT.java class uses the METEOR API to infer align-
ments. It should be compiled by running MEMT/Alignment/compile.sh. This script
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will also download and install METEOR if necessary. Tokenized system outputs
should be placed in text files with one segment per line. Running alignment is straight-
forward:
$ MEMT/Alignment/match.sh system1.txt system2.txt system3.txt >matched

4.3. Optional Language Model Filtering

Optionally, an ARPA language model can be filtered to the sentences being com-
bined. The filter checks that an n-gram’s vocabulary is a subset of some segment’s
vocabulary. This is much more strict than testing against the entire set’s vocabulary,
where words in an n-gram could be spread across several segments. The reduction in
size can be dramatic: filtering a 19 GB ARPA file for the NIST MT09 Informal System
Combination task produced a 1.4 GB ARPA file. Since the server will load this model
into RAM, filtering greatly decreases hardware requirements. The command to filter
to any number of matched files, including those with different sets of systems, is:
$ cat matched1 matched2 matched3 |MEMT/dist/FilterLM in.arpa out.arpa
The filter is fast: it keeps only the vocabularies in memory and takes about 12 min-
utes to filter a 19 GB model. This language model filter is also available as a separate
package that reads one segment vocabulary per line. While phrase table expansion
reduces effectiveness for statistical machine translation systems, we were still able to
reduce model size by 36% by filtering to 1797 segments. It can also produce segment-
level language model files if desired.

4.4. Decoding Server

The actual decoding algorithm runs inside a server process that accepts TCP con-
nections. This avoids reloading the language model, which typically takes longer than
performing thousands of combinations. The server is launched by specifying the lan-
guage model and port:
$ MEMT/scripts/server.sh --lm.type ngram --lm.file lm.arpa --port 2000
When loading the language model has finished, it will print “Accepting Connections.”
Except for the language model and some threading options, configuration is sent by
clients. Multiple connections with different configurations work properly. The pro-
tocol is highly compressible plain text, especially for k-best lists, so we advise using
compressed SSH tunneling if the connection between client and server is slow.

4.5. Configuration

Most of the configuration options are set by clients of the decoding server. Fig-
ure 1 shows a configuration file without feature weights, which are added by tuning.
Important hyperparameters to tweak are:
horizon The suboption radius controls how long words linger as described in Sec-

tion 3.2. The method of distance measurement can be length or nearby alignment,
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as described in (Heafield et al., 2009). Generally, a larger window works best in
the presence of significant reordering. We recommend starting with length and
a radius of 5.

verbatim Match features are called verbatim in the code. Two instances are pro-
vided; work on more flexible feature instantiation is planned. The idea behind
two instances is that one does lexical voting using exact matches while the other
uses all alignments to handle support and word order issues. The mask option
controls which alignment types will count, including the implicit self align-
ment of words and boundary markers. The maximum match length to consider
is also a key parameter. The individual option determines the maximum match
length reported individually for each system. This may lead to too many fea-
tures, so longer n-gram match counts can be presented on a collective basis
by summing counts across systems.

ouptut.nbest Size of n-best output requested.
length_normalize This determines if feature values are divided by length, excepting

of course the length feature itself. When disabled, the length feature otherwise
acts to subtract the impact of length from other features. Empirically, we find
turning off length normalization makes the output score slightly higher and
output 1-2% longer.

Authoritative documentation of all options is printed when the server is run without
an argument:
$ MEMT/scripts/server.sh

4.6. Tuning

Tuning requires a directory with three files: decoder_config_base containing the
configuration file from Section 4.5, dev.matched containing the aligned tuning sen-
tences from Section 4.2, and dev.reference containing the references (one per line).
Multiple references for the same segment appear on consecutive lines. Assuming
these files are in work_dir and the decoding server is running on port 2000, the com-
mand line is:
$ MEMT/scripts/zmert/run.rb 2000 work_dir
If the server is running on another machine, it may be specified as host:port. This
will run Z-MERT to tune the system and produce the file work_dir/decoder_config
with tuned weights. It also decodes the tuning set with this configuration, placing
output in work_dir/output.1best. Finally, it scores this tuning output against the
provided reference, placing results in work_dir/output.1best.scores.

4.7. Decoding and Evaluation

Test data is decoded using the tuned configuration file and test matched file:
$ MEMT/scripts/simple_decode.rb 2000 decoder_config matched output
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output.nbest = 300
beam_size = 500
length_normalize = false

#Remove words more than 5 behind as measured by length.
horizon.method = length
horizon.radius = 5

#Count exact matches up to length 2 for each system.
score.verbatim0.mask = "self exact boundary"
score.verbatim0.individual = 2
score.verbatim0.collective = 2
#Count non-paraphrase matches up to length 2 for each system.
#For length 3 and 4, sum the match counts across systems.
score.verbatim1.mask = "self exact boundary snowball_stem wn_synonymy"
score.verbatim1.individual = 2
score.verbatim1.collective = 4

Figure 1. Sample configuration file before tuning weights.

which creates output.1best with one segment per line and output.nbest in Moses
(Koehn et al., 2007) format.

We provide a script that scores translations with BLEU (Papineni et al., 2002) from
mteval-13a.pl (Peterson et al., 2009), NIST (Doddington, 2003), TER 0.7.25 (Snover
et al., 2006), METEOR 1.0 (Banerjee and Lavie, 2005), unigram precision and recall,
and length ratio. The following command generates the file output.1best.scores
containing these respective scores:
$ Utilities/scoring/score.rb --hyp-tok output.1best --refs-laced ref
Running with --print-header will show column headers. Running without argu-
ments provides the full list of options. This script is also available for download as a
separate package.

5. Results

The 2009 Workshop on Machine Translation (WMT) (Callison-Burch et al., 2009)
and NIST Open MT evaluations (Peterson et al., 2009) both added tracks specifically
to evaluate system combination. We participated in both and now present updated
unofficial results in Table 1. Gains on NIST data are surprisingly large–but not unex-
pected given the results from the evaluation (Peterson et al., 2009). Gains on WMT
data depend mostly on the gap between Google and other systems; with a large gap,
the effectiveness of system combination is minimal.
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Source System BLEU TER METEOR

NIST Arabic combo 58.55 36.86 70.76
top single 51.88 40.54 67.74

NIST Urdu combo 34.72 55.46 53.37
top single 32.88 56.20 52.24

WMT Czech combo 21.98 60.48 46.63
top single 21.18 59.57 46.91

WMT French combo 31.56 52.48 54.30
top single 31.14 51.36 54.91

WMT German combo 23.88 58.29 48.69
top single 21.31 60.78 56.82

WMT Hungarian combo 13.84 71.89 36.70
top single 12.75 68.35 35.43

WMT Spanish combo 28.79 53.63 53.51
top single 28.69 53.38 54.20

Table 1. Unofficial post-evaluation scores on test data from past system combination
tasks with the top system by BLEU shown in italics for comparison. The NIST MT09
Arabic-English scores are on unsequestered segments only. For 2009 Workshop on

Machine Translation results, the language model is constrained; there was no
constrained track for MT09 informal system combination. BLEU is uncased (and
therefore not the official NIST MT09 metric), TER is version 0.7.25, and METEOR is

version 1.0 with hter parameters.

6. Conclusion

We have released the source code to our system combination scheme. It shows
significant improvement on some translation tasks, particularly those with systems
close in performance. The software is ready to be downloaded, installed, and run. We
hope to receive patches from users. In addition to the core system combination code,
the language model filter and evaluation script are available as separate packages of
general use to the community.
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